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Abstract
The interaction between a moving electric charge and a stationary electric
charge distribution is considered. It is shown that the interaction involves not
only an electric attraction or repulsion but also a heretofore unreported electric
torque exerted by the moving charge on the stationary charge distribution. The
torque is associated with the asymmetry of the electric field of the moving
charge and is present even if the stationary charge distribution is highly
symmetrical, such as a uniformly charged sphere, for example. As a result
of the torque, the stationary charge distribution is set in rotation. The rotating
stationary charge distribution creates a magnetic field and an induced electric
field that act on the moving charge thus further contributing to the complexity
of the interaction. Two types of moving charges are considered: a point charge
moving with constant speed along a straight line and a point charge moving
with constant speed along a circular orbit. The torques exerted by these charges
on stationary charge distributions in the shape of a small circular ring, small
disc, and small sphere of uniform charge density are computed and some
consequences of these torques are discussed. The possibility of the existence
of a similar interaction effect in gravitational systems is also considered.

PACS number: 03.50De

1. Introduction

It is generally believed that a highly symmetrical charge distribution (a spherical charge of
uniform charge density, for example) located in an external electric field experiences a force
but does not experience a torque1. However, as is shown in this paper, even a spherical charge

1 It is generally assumed that interacting electric charge distributions do not exert torques on each other unless at
least one of the charge distributions has a permanent or induced electric dipole moment. See, for example, [1].
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of uniform charge density experiences not only a force but also a torque when located in the
field of a moving charge.

In the calculations that follow, two types of moving charges are considered: a point charge
moving with constant speed along a straight line (constant velocity vector v) and a point charge
moving with constant speed along a circular orbit.

As is known, the electric field E of a point charge q moving with constant velocity v is
represented by the Heaviside’s formula [2–5]

E = q(1 − v2/c2)

4πε0r3[1 − (v2/c2) sin2 θ ]3/2
r (1)

where ε0 is the permittivity of space, c is the velocity of light, r is the radius vector directed
from q to the point of observation, r is the magnitude of r, v is the magnitude of v and θ is
the angle between r and v.

The electric field of a point charge q moving with acceleration v̇ is represented by the
formula [6–8]

E = q

4πε0r3(1 − r · v/rc)3

{(
r − rv

c

)(
1 − v2

c2

)
+ r ×

[(
r − rv

c

)
× v̇

c2

]}
(2)

where the notation is the same as in equation (1), except that v̇, r and v are retarded, that
is, evaluated for the time t ′ = t − r/c, where t is the present time (the time for which E
is evaluated). If the charge moves along a circular orbit of radius R, the acceleration is
v̇ = (v2/R2)R, where R is directed from q to the centre of the orbit. Therefore for a charge
moving along a circular orbit equation (2) becomes

E = q

4πε0r3(1 − r · v/rc)3

{(
r − rv

c

)(
1 − v2

c2

)
+ r ×

[(
r − rv

c

)
× v2R

c2R2

]}
. (3)

In contrast to the electric field of a stationary point charge, the electric fields represented
by equations (1)–(3) are not radially symmetric. As we shall see, it is the asymmetry of these
fields that is responsible for the torque and rotation experienced by highly symmetrical charge
distributions under the action of these fields.

Because of the complexity of equations (1)–(3), exact analytical calculations of torques
exerted on arbitrary charge distributions by point charges moving at arbitrary speeds are
hardly possible. Therefore we shall restrict our calculations to the special case of moving
point charges whose velocity is considerably smaller than the velocity of light and to the special
case of stationary charge distributions whose linear dimensions are considerably smaller than
the distance of these charge distributions from the moving charge.

2. Torque due to a point charge moving with constant velocity

Let a negative point charge q move with constant velocity v past a positive spherical charge
Q of uniform charge density ρ, and let q and the centre of Q be in a plane normal to the page
(figure 1). Consider two points P1 and P2 within Q located symmetrically with respect to that
plane. According to equation (1), the force F1 = E1dQ acting on the charge element dQ

located at P1 is larger than the force F2 = E2dQ acting on the charge element dQ located
at P2 (because sin θ1 is larger than sin θ2). Therefore the torque with respect to the centre of
Q acting on dQ at P1 is also larger than the oppositely directed torque with respect to the
centre of Q acting on dQ at P2. Since the same considerations apply to all such symmetrically
located points within Q, the charge Q experiences a net torque with respect to its centre and, as
a result, is caused to rotate about its centre (we assume that the mass density of Q is uniform).
In particular, for the configuration of q and Q shown in figure 1, Q rotates clockwise.
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Figure 1. The force F1 acting on the charge element located at P1 is larger than the force F2
acting on an equal charge element located at P2. Therefore the stationary charge Q experiences a
torque causing it to rotate.

Figure 2. The torque acting on the ring carrying a charge Q is found by integrating the torque
acting on the shaded segment of the ring.

As mentioned in the introduction, exact calculations of the torque exerted by point charges
moving at arbitrary velocities on stationary charge distributions of arbitrary linear dimensions
are difficult. Therefore we shall calculate the torque for the special case of a moving point
charge q whose velocity v satisfies the relation v � c, and, as the stationary charge distribution
Q, we shall use a charged ring, disc and sphere whose radius a satisfies the relation a � r0,
where r0 is the distance between q and the centre of Q.

2.1. Torque on a uniformly charged ring

Let a negative point charge q move with constant velocity v in the plane of a charged ring
of radius a and cross-sectional area S carrying a uniformly distributed positive charge Q of
density ρ, as shown in figure 2. Let v satisfy the relation v � c and let the radius vector
r0 representing the distance from q to the centre of the ring satisfy the relation a � r0. The
torque dT with respect to the centre of the ring exerted by q on the charge element ρSa dφ

contained in the shaded segment of the ring is then

dT = ρSa dφ(a × E) = kρSa2E sin β dφ = kρSa2E sin(φ + α) dφ (4)

where the angles α, β and φ are as shown in figure 2, E is the electric field produced by q at
the location of the charge element, E is the magnitude of E, and k is a unit vector directed
into the page.
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Since, by supposition, v � c, we can simplify equation (1) for E as follows:

E = q(1 − v2/c2)

4πε0r2[1 − (v2/c2) sin2 θ ]3/2
≈ q(1 − v2/c2)

4πε0r2

[
1 + 3

2 (v2/c2) sin2 θ
]

≈ q

4πε0r2

[
1 +

v2

c2

(
3

2
sin2 θ − 1

)]
. (5)

Using θ = θ0 + α, where θ0 is the angle between v and r0 and taking into account that α is a
small angle (because, by supposition, a � r0), we have for sin2 θ

sin2 θ = sin2(θ0 + α) = (sin θ0 cos α + sin α cos θ0)
2 ≈ (sin θ0 + α cos θ0)

2

≈ sin2 θ0 + 2α sin θ0 cos θ0 = sin2 θ0 + α sin 2θ0. (6)

Equation (5) can therefore be written as

E ≈ q

4πε0r2

{
1 +

v2

c2

[
3

2

(
sin2 θ0 + α sin 2θ0

) − 1

]}
. (7)

We can further simplify equation (7) by expressing r in terms of r0. From figure 2 we see
that

r2 = r2
0 − a2 − 2ar0 cos φ (8)

which, since a � r0, can be written as

r2 ≈ r2
0 [1 − 2(a/r0) cos φ] ≈ r2

0 . (9)

Equation (7) therefore becomes

E ≈ q

4πε0r
2
0

{
1 +

v2

c2

[
3

2

(
sin2 θ0 + α sin 2θ0

) − 1

]}
. (10)

Now, remembering that α is a small angle, we simplify equation (4) to

dT = kρSa2E sin(φ + α) dφ ≈ kρSa2E(sin φ + α cos φ) dφ. (11)

Substituting E from equation (10), we then have

dT = kρSa2q

4πε0r
2
0

{
1 +

v2

c2

[
3

2

(
sin2 θ0 + α sin 2θ0

) − 1

]}
(sin φ + α cos φ) dφ. (12)

Finally, recognizing from figure 2 that α ≈ (a sin φ)/r0, we obtain

dT = kρSa2q

4πε0r
2
0

{
1 +

v2

c2

[
3

2

(
sin2 θ0 +

a sin 2θ0 sin φ

r0

)
− 1

]}(
sin φ +

a cos φ sin φ

r0

)
dφ.

(13)

Integrating equation (13) from 0 to 2π , we have

T ≈ kρSa2q

4πε0r
2
0

∫ 2π

0

{
1 +

v2

c2

[
3

2

(
sin2 θ0 +

a sin 2θ0 sin φ

r0

)
− 1

]}(
sin φ +

a cos φ sin φ

r0

)
dφ

(14)

which gives for the torque acting on the entire ring

T ≈ k
3ρSqa3v2

8ε0r
3
0 c2

sin 2θ0 (15)

where we have dropped the term with a2
/
r2

0 .
Replacing ρ in equation (15) by Q/2πaS, we obtain the expression for the torque in

terms of the charge Q of the ring:

T ≈ k
3qQa2v2

16ε0r
3
0 c2

sin 2θ0. (16)
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2.2. Torque on a uniformly charged disc

We can use equation (15) for finding the torque acting on a small charged disc by considering
the ring shown in figure 2 to be a differential element of the disc.

Let the thickness of the disc be τ and let its radius be a. Replacing S in equation (15) by
τdx, replacing a by x and integrating over x from 0 to a, we obtain for the torque acting on the
disc

T ≈ k
3ρτqv2

8ε0r
3
0 c2

sin 2θ0

∫ a

0
x3 dx (17)

or

T ≈ k
3ρτa4qv2

32ε0r
3
0 c2

sin 2θ0. (18)

Replacing ρ in equation (18) by Q/πa2τ , we find the torque acting on the disc in terms
of the charge Q of the disc:

T ≈ k
3Qqa2v2

32πε0r
3
0 c2

sin 2θ0. (19)

2.3. Torque on a uniformly charged sphere

Since a thin disc may be regarded as a differential element of a sphere, we can find the torque
acting on a small charged sphere of radius a by using equation (18). To do so, we replace in
equation (18) a4 by (a2 − y2)2, replace τ by dy and integrate over y from −a to +a. The
result is

T ≈ k
3ρqv2

32ε0r
3
0 c2

sin 2θ0

∫ +a

−a

(a4 − 2a2y2 + y4) dy (20)

or

T ≈ k
ρqa5v2

10ε0r
3
0 c2

sin 2θ0. (21)

Replacing ρ in equation (21) by 3Q/4πa3, we find the torque acting on the sphere in
terms of the charge Q of the sphere:

T ≈ k
3Qqa2v2

40πε0r
3
0 c2

sin 2θ0. (22)

3. Torque due to a point charge moving along a circular orbit

We start with equation (3) for the electric field of a point charge q moving with uniform
velocity v along a circular orbit of radius R (figure 3). Let us find the electric field of q at the
centre of the orbit. In this case r = R and r ·v = R · v = 0, so that equation (3) simplifies
to

E = q

4πε0R3

[
R

(
1 − v2

c2

)
− v

R

c

]
. (23)

Equation (23) expresses the electric field in terms of the retarded position vector and
retarded velocity vector of the charge. Retarded quantities are seldom observed in laboratories,
and therefore, for practical applications, expressions containing retarded quantities should be
converted to the present time (the time for which E is observed). We can convert equation (23)
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Figure 3. Correlation between the retarded quantities θ , R and v and the present-time quantities
θ0,R0 and v0 for a point charge q moving along a circular orbit.

to the present time by resolving the retarded position vector R and the retarded velocity vector
v into their components along the present position vector R0 and the present velocity vector
v0 (the radius R of the orbit is, of course, not affected by retardation and need not be
converted). Since the angle between the present position vector and the retarded position
vector is θ0 − θ = ωR/c = v/c, where ω is the angular velocity of the charge, we obtain for
the two components of E

ER0 = q

4πε0R3

[(
1 − v2

c2

)
R cos(v/c) +

Rv

c
sin(v/c)

]
(24)

Ev0 = q

4πε0R3

[(
1 − v2

c2

)
R sin(v/c) − Rv

c
cos(v/c)

]
(25)

and for the total field

E = q

4πε0R3

[(
1 − v2

c2

)
cos(v/c) +

v

c
sin(v/c)

]
R0

+
q

4πε0R3

[(
1 − v2

c2

)
R

v
sin(v/c) − R

c
cos(v/c)

]
v0. (26)

In the calculations presented in section 2, we assumed that v � c. In the calculations
that follow, we shall only assume that we can neglect v/c to powers higher than 3. Expanding
sin(v/c) and cos(v/c) in equation (26) into power series of v/c and dropping terms containing
v/c to powers higher than 3, we then obtain

E = q

4πε0R3

[(
1 − v2

2c2

)
R0 − 2Rv2

3c3
v0

]
. (27)

The R0 component of equation (27) is radially symmetric and therefore cannot contribute
to the torque on a highly symmetrical charge Q at the centre of the orbit. Therefore, in the
calculations that follow we only need to consider the v0 component of E,

Ev0 = − qv2

6πε0R2c3
v0. (28)

3.1. Torque on a uniformly charged ring

Let q be negative and let it rotate about a positive-charged ring of uniform charge density ρ,
cross sectional area, S and total charge Q whose centre is at the centre of the orbit and whose
plane coincides with the plane of the orbit of q (figure 4). Let v satisfy the relation v � c and
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Figure 4. The torque acting on the ring carrying a charge Q and located at the centre of the orbit of
q is found by integrating the torque acting on the shaded segment of the ring. Note that the force
acting on the shaded sector is in the direction of the velocity vector v0 of q.

let the radius of the ring a satisfy the relation a � R. Although we have derived equation (28)
for the centre of the orbit, it is approximately valid for points close to the centre, and since the
radius of our ring is much smaller than the radius of the orbit, we can use equation (28) for
finding an approximate expression for the torque exerted by q on the ring.

For the torque dT with respect to the centre of the ring exerted by q on the charge element
ρSa dφ contained in the shaded segment of the ring, we then have

dT = ρSa dφ(a × Ev0) = kρSa2Ev0 sin β dφ = kρSa2Ev0 cos φ dφ (29)

where the angles β and φ are as shown in figure 4, Ev0 is the magnitude of Ev0 at the location
of the shaded segment, and k is a unit vector directed into the page. According to equation
(28), taking into account that q is negative,

Ev0 = qv3

6πε0R′2c3
(30)

where R′ is the distance between q and the shaded segment of the ring and v is the magnitude of
the velocity vector v0 (which, of course, is the same as the magnitude of the velocity vector v).
From figure 4 we see that, since a � R, the distance from q to the shaded segment element of
the ring is approximately

R′ ≈ R − a cos φ (31)

and therefore
1

R′2 ≈ 1

(R − a cos φ)2
≈ 1

R2

(
1 +

2a

R
cos φ

)
. (32)

Substituting equations (30) and (32) into equation (29), we have

dT ≈ kρSa2 qv3

6πε0R2c3

(
1 +

2a

R
cos φ

)
cos φ dφ. (33)

Integrating equation (33) from 0 to 2π , we obtain for the torque acting on the ring

T ≈ kρSa3 qv3

6ε0R3c3
. (34)

Replacing ρ in equation (34) by Q/2πaS, we obtain the expression for the torque in
terms of the charge Q of the ring:

T ≈ k
qQa2v3

12πε0R3c3
. (35)
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3.2. Torque on a uniformly charged disc

We can use equation (34) for finding the torque acting on a small charged disc by considering
the ring shown in figure 4 to be a differential element of the disc.

Let the thickness of the disc be τ and let its radius be a. Replacing S in equation (34) by
τdx, replacing a by x and integrating over x from 0 to a, we obtain for the torque acting on
the disc

T ≈ k
ρτqv3

6ε0R3c3

∫ a

0
x3 dx (36)

or

T ≈ k
ρτa4qv3

24ε0R3c3
. (37)

Replacing ρ in equation (37) by Q/πa2τ , we find the torque acting on the disc in terms
of the charge Q of the disc:

T ≈ k
qQa2v3

24πε0R3c3
. (38)

3.3. Torque on a uniformly charged sphere

Since a thin disc may be regarded as a differential element of a sphere, we can find the torque
acting on a small charged sphere of radius a by using equation (37). To do so, we replace a4

in equation (37) by (a2 −y2)2, replace τ by dy and integrate over y from −a to +a. The result
is

T ≈ k
ρqv3

24ε0R3c3

∫ +a

−a

(a4 − 2a2y2 + y4) dy (39)

or

T ≈ k
2ρqa5v3

45ε0R3c3
. (40)

Replacing ρ in equation (40) by 3Q/4πa3, we find the torque acting on the sphere in
terms of the charge Q of the sphere:

T ≈ k
qQa2v3

30πε0R3c3
. (41)

4. Discussion

As we have seen, a moving charge does not merely attract or repel a stationary charge
distribution, but also exerts a torque on it and thus causes it to rotate even if the stationary
charge distribution is highly symmetric and has a uniform charge density. The direction of
rotation depends on the polarity of the charges under consideration and on the direction of
velocity of the moving charge.

In particular, when a negative point charge, starting from infinity, moves with constant
speed along a straight line past a positive spherical charge, the point charge, as it comes closer
to the spherical charge, exerts a torque on the spherical charge causing it to rotate so that the
part of the spherical charge nearest to the point charge moves in the direction along which the
point charge is moving. But then, as the point charge moves away from the spherical charge,
the direction of the torque is reversed and, if not for the inertia of the spherical charge, it would
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rotate so that its part nearest to the point charge would move in the direction opposite to the
direction along which the point charge is moving. According to equation (22), the torque is
greatest at θ0 = π/4 and θ0 = 3π/4, and it is zero at θ0 = 0, θ0 = π/2 and θ0 = π .

If a negative point charge moves along a circular orbit around a positive spherical charge
located at the centre of the orbit, the torque exerted by the point charge on the spherical charge
is always in the same direction and causes the spherical charge to rotate in the same sense in
which the point charge revolves.

Clearly, the dynamics of the interaction between a moving point charge and a stationary
charge distribution is much more complicated than previously believed. The torque exerted
by the moving charge on the stationary charge and the subsequent rotation of the stationary
charge are only the initial stages of a very complex sequence of events. When the stationary
charge rotates, it creates a magnetic field. In the case of a point charge moving along a straight
line2, the torque acting on the stationary charge is a function of time and therefore the angular
velocity of the stationary charge is also a function of time. Therefore the magnetic field
created by the stationary (rotating) charge is time dependent and, hence, induces an electric
field. The induced electric field acts in turn on the moving point charge and affects its motion
unless the motion is somehow controlled by external means. This is quite different from the
attraction–repulsion interaction that we usually associate with a point charge moving past a
stationary charge.

The interaction between an orbiting point charge and a spherical charge at the centre
of the orbit is even more complex. In principle, such a system can be closed and need not
depend on external forces for its stability. However, because of the torque acting on the
central charge, the stability of the system is not at all certain. First, because, by equation
(41), the torque exerted by the orbiting point charge is always present, the angular velocity
of the central charge constantly accelerates. Therefore the magnetic field resulting from the
rotation is always present and so is the induced electric field. Clearly, under these conditions
the orbiting charge cannot move with constant speed, and the radius of the orbit cannot
remain the same unless there exists some as yet undisclosed mechanism that keeps the speed
and the radius constant (for the purpose of this discussion we ignore radiation by the orbiting
charge). Furthermore, there is a problem with the conservation of angular momentum. In a
closed system, the sum of the mechanical angular momentum and the electromagnetic angular
momentum must remain the same at all times. This means that the magnetic field of the
rotating charge, the magnetic field of the moving point charge, and the electric fields of the
moving point charge and of the stationary (rotating) charge must at all times maintain a very
precise balance.

In summary, then, the interaction between a moving point charge and a stationary charge
is a very complex phenomenon, the details of which are yet to be determined. However, it
is quite clear that by assuming that the electric interaction between moving and stationary
charges is merely a Coulomb-type interaction (as is done, for example, in quantum mechanics
and quantum electrodynamics [9]), one can obtain only approximate solutions of the problems
involving moving and stationary charges.

We shall conclude this discussion by pointing out a possible relevance of the results of this
paper to gravitational interactions. In 1893, Oliver Heaviside published a paper suggesting
the existence of an analogy between time-dependent gravitational fields and electromagnetic
fields [10]. The existence of such analogy follows also from general relativity theory [11]. In
his paper, Heaviside derived a formula for the gravitational field of a point mass moving with

2 It should be noted that because of the interaction between the two charges such a motion is impossible unless the
point charge is by some external means constrained to maintain its velocity.
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constant speed along a straight line. In modern notation Heavisides’s formula is

g = −G
m(1 − v2/c2)

r3[1 − (v2/c2) sin2 θ ]3/2
r (42)

where g is the gravitational field, G is the gravitational constant, m is the mass of the moving
point mass, v is the velocity of the mass, c is the speed of propagation of gravitation (generally
assumed to be the same as the speed of light), r is the radius vector joining the moving point
mass with the point of observation, r is the magnitude of r and θ is the angle between the
velocity vector v and r. As one can see, except for the sign and symbols, the formula is the
same as equation (1). Therefore all the consequences obtained above on the basis of equation
(1) should be applicable to gravitational fields. Furthermore, it is clear that if equation (42)
holds, then the field of an orbiting point mass should be, by analogy with equation (27),

g = −G
m

R3

[(
1 − v2

2c2

)
R0 − 2Rv2

3c3
v0

]
. (43)

Therefore an orbiting mass (planet or satellite) may be expected to exert a torque on the central
body and cause this body to rotate. Of course, because of the factor v3/c3 in equation (28) (and
therefore the same factor in the corresponding gravitational equation) and because planets and
satellites move with speeds very much smaller than the speed of light, the torque acting on the
central mass in a planetary system should be very small. However, taking into account that
the timescale in cosmic systems is extremely long, the cumulative effect of the gravitational
torque may be significant. It remains to be seen whether or not such a gravitational effect
exists.
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